Trees

Trees

- A tree is an ADT that stores elements hierarchically.
- A tree \boldsymbol{T} is a set of nodes storing elements in a parent-child relationship with the following properties:
- \boldsymbol{T} has a special node r, called the root of \boldsymbol{T}.
- Each node v of T different from r has a parent node u.

- Direct applications:
- Organizational charts
- File systems
- Programming environments

Tree Terminologies

- If node u is the parent of node v, then we say that v is a child of u.
- Two nodes that are children of the same parent are siblings .
- A node is external (leaf) if it has no children, and it is internal if it has one or more children.
- The ancestors of a vertex are the vertices in the path from the root to this vertex.
- The descendants of a vertex v are those vertices that have v as an ancestor.
- Depth : The depth of a node is the number of edges from the node to the tree's root node. In other words, the depth of v is the number of ancestors of v.
- The height of a tree T is equal to the maximum depth of an external node of T.
- Height of a node v is the number of edges on the longest path from v to a leaf. A leaf node will have a height of 0 . The height of a tree is the largest level of the vertices of a tree which is he height of a root.
- A subtree of a tree T is a tree S consisting of a node in T and all of its descendants in T .

Example

Theorem: A tree with n nodes has $\mathrm{n}-1$ edges.

- The parent of d is a.
- The children of c are g, h, and i.
- The siblings of g are h and i.
- The ancestors of f are d, a, and r.
- The descendants of a are d, e, and f.
- The internal vertices are r, a, d, c, g, and i.
- The leaves are e, f, b, j, h, k, and l.
- The height of d is 1 .
- The height of c is 2 .
- The height of b is 0 .
- The height of r is 3 which is the height of tree.
- The depth of \boldsymbol{d} is 2 .
- The depth of r is 0 .
- The depth of \boldsymbol{k} is 3 .
- The height of Tree is 3 .

Tree Traversal

- A traversal of a tree T is a systematic way of accessing, or "visiting," all the nodes of T.
- There are three main types of tree traversals:
- Preorder: A node is visited before its descendants.
- Postorder: a node is visited after its descendants.
- Inorder: We will talk about this later. This is only supported in binary tree.

Tree Traversal

- preorder: a node is visited before its descendants

- postorder: a node is visited after its descendants

Binary Trees

- A binary tree is an ordered tree with the following properties:
- Each internal node has only two children
- The children of a node are an ordered pair (left child, right child)
- Recursive definition: a binary tree is
- A single node is a binary tree
- Two binary trees connected by a root is a binary tree
- Applications:

- arithmetic expressions
- decision processes
- searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands
- Ex: arithmetic expression tree for expression $(2 \times(a-1)+(3 \times b))$

Decision Tree

- Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions
- Ex: dining decision

Binary Tree Types
 - Two main Types:
 - Full Binary tree
 - Complete Binary Tree

Full Binary Tree

A full binary tree is a tree in which every node other than the leaves has two children.

Complete Binary Tree

- A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Number of nodes at Levels

- Level l has at most 2^{l} nodes
- The number of external nodes in T is at least $\mathrm{h}+1$ and at most 2^{h}.

Figure 2.25: Maximum number of nodes in the levels of a binary tree.

Binary Tree Traversals

- Three main types:

1) Preorder traversal : Preorder (Root, Left, Right)

- the root node is visited first, then the left subtree and finally the right subtree.

2) Postorder Traversal: Postorder (Left, Right, Root)

- the root node is visited last, hence the name. First we traverse the left subtree, then the right subtree and finally the root node.

3) Inorder Traversal: Inorder (Left, Root, Right)

- the left subtree is visited first, then the root and later the right sub-tree.

Preorder Traversal of a Binary Tree

- Preorder traversal: Preorder (Root, Left, Right)

1. the root node is visited first,
2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

$O(n) \quad$| preorder (v) |
| :---: |
| if $x!=N u l l$ |
| print (x.value) |
| preorder(x.leftchild) |
| preorder(x.righchild) |

Ex: ABDEHICFG

Postorder Traversal of a Binary Tree

- Postorder traversal: Postorder (Left, Right, Root)

1. Traverse the left subtree, i.e., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorder(right-subtree)
3. Visit the root.

$O(n) \quad$| postorder (v) |
| :---: |
| if $x!=$ Null |
| postorder(x.leftchild) |
| postorder(x.righchild) |
| print (x.value) |

Ex: DHIEBFGCA

Inorder Traversal of a Binary Tree

- Inorder traversal: Inorder (Left, Root, Right)

1. Traverse the left subtree, i.e., call Inorder(left-subtree)
2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Ex: DBHEIAFCG

Linked Data Structure for Representing Trees

A node stores:

- element
- parent node
- sequence of children nodes

Linked Data Structure for Binary Trees

A node stores:

- element
- parent node
- left node
- right node

Array-Based Representation of Binary Trees

Nodes are stored in an array

- rank(root) = 1
- If rank(node) $=i$, then
$\operatorname{rank}(\operatorname{leftChild})=2^{*} i$
rank(rightChild) $=2 * i+1$

$$
\begin{aligned}
& \text { Ex: ' } A \text { ' is left child of } B \\
& \begin{aligned}
\operatorname{rank}(A) & =2 * \operatorname{rank}(B) \\
& =2 * 1=1
\end{aligned}
\end{aligned}
$$

$E x$: ' E ' is right child of D $\operatorname{rank}(\mathrm{E})=2 * \operatorname{rank}(\mathrm{D})+1$

$$
=2 * 3+1
$$

$$
=7
$$

Exercises

- Write the iterative Implementation (Pseudocode) of preorder and postorder traversals?
- The number of edges from the node to the deepest leaf is called
\qquad of the tree.
a) Height
b) Depth
c) Length
d) Width

